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Abstract: We investigate the potential of structural changes and long memory properties in 

returns and volatility of the two major precious stock markets (SP500 and CAC40). Broadly 

speaking, a random variable is said to exhibit long memory behavior if its autocorrelation 

function is not integrable, while structural changes can induce sudden and significant shifts in 

the time-series behavior of that variable. The results from implementing several parametric and 

semi-parametric methods indicate strong evidence of long range dependence in the daily 

conditional return and volatility processes for the stock markets. Despite the divergence of the 

economic situation and the geographical positions of the countries making up our sample, the 

FIGARCH and FIEGARCH models mainly turn out to be the most accurate models for 

predicting the volatility of the stock market.  
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INTRODUCTION 

 

It is now widely agreed that oil price and stock markets return volatilities are time varying, with 

persistent dynamics. This is true across assets, asset classes, time periods, and regions. 

Furthermore, asset return volatilities are central to finance, whether in asset pricing, portfolio 

allocation, or market risk measurement. Therefore, the field of financial econometrics dedicates 

considerable attention to time-varying volatility and associated tools designed for its 

measurement modeling and forecasting. 

 

In the last few decades a growing number of studies have focused attention on the analysis and 

forecasting of volatility, due to its important role in financial markets. Portfolio managers, 

option traders and market makers all are interested in the opportunity of forecasting, with a 
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reasonable level of accuracy, this significant magnitude, in order to get either higher proceeds 

or less risky positions. 

This p 

ersistence in volatility is a common empirical result in financial economics and was studied 

extensively in Baillie et al (1996) and Andersen et al (2003), Koopman et al. (2005) and Corsi 

(2009). Whereas stock markets have largely been found to include very little autocorrelation, it 

has been noted in a large number of works across different asset classes that autocorrelation in 

diverse measures of volatility does exist at significant levels and remains over a large number 

of works across diverse asset classes that autocorrelation in various measures of volatility does 

exist at significant levels and remainder over a large number of lags.  

  

The recent more general long-memory literature, in contrast, pays comparatively little attention 

to confusing long memory and structural break. It is important, for example, that the otherwise 

masterful investigations by Bilke (2005), Lee (2005), Gourieroux and Jasiak (2001), don’t so 

much as mention the subject. The opportunity of confusing long memory and structural breaks 

has of course arisen occasionally, in a numerous of literatures including applied exchange rates 

Sakoulis et al. (2010)’s, econometrics1, and mathematical statistics2, but those warnings have 

had little shock.  

 

A new contribution of Sakoulis et al. (2010) argues that the persistence of forward premium is 

affected by the presence structural breaks. This study casts some doubt on 3 their finding, and 

argues that the presence of structural breaks in Sakoulis et al. (2010) is a result of model mis-

specification, which ignores a proper lag structure that is usually related with AR regression or 

unit root test.  

 

In addition to Sakoulis et al. (2010)’s study, we also process the forward discount as an AR(1) 

model with structural breaks along with a lag structure. We provide evidence that when a proper 

lag length is included in Sakoulis et al. (2010)’s process, the structural breaks do not have some 

effects on the autoregressive parameter of the lagged forward discount. Results obtained from 

imposing a lag structure on Sakoulis et al. (2010)’s process are robust to those from that without 

lag structure.  

 

With the consideration of problems described more than, the results of Choi and Zivot (2007) 

and Kellar and Sarantis (2008) show that the forward exchange rate exhibits both fractionally 

integrated behavior and structural change. 

 

The purpose of this paper is to propose an easy-to implement approach for forecasting a long 

memory process subject to structural change. The conventional forecasting technique based on 

post-break data could be sub-optimal for the break detection approach can lead to false results 

concerning the number of structural changes even the data generating process truly follows an 

                                                           
1For example see Hidalgo and Robinson, (1996), Lobato and Savin, (1997). 
2For example see, Bhattacharya, et al, (1983), Künsch, (1986) and Teverovsky and Taqqu, (1997). 
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fractionally integrated process without breaks (for example Granger and Hyung, 2004 and Hsu, 

2001) or there could be more than one structural change. 

 

This paper is organized as follows. Section 2 presents a review of empirical literature about 

modeling and forecasting financial returns. Section 3 presents the GARCH-class of models used 

in this study. Section 4 discusses the empirical findings of both estimation and forecasting. 

Finally, Section 5 concludes the paper. 
 

LITERATURE REVIEW 
 

This paper fits two long memory volatility models, Fractionally Integrated GARCH 

(FIGARCH) and (FIEGARCH) that allow for asymmetry. Baillie et al (1996) find that these 

processes have considerable success in modeling in daily stock market and oil price and we will 

investigate whether these GARCH models can indicate the long memory proprieties of stock 

markets returns. 

 

Baillie (1996) shows that long memory processes have the attribute of having very strong 

autocorrelation persistence previous to differencing, and there by being non-stationary, whereas 

the first differenced series does not demonstrate persistence and is stationary. Though the long 

memory property of these stock price series is not evident from just first differencing alone, but 

has resulted from analysis of risk measures, in fact financial returns.    
 

Econometric methodology  
Modeling and forecasting conditional variance with GARCH-class of models has been 

examined in several studies (for example Pagan and Schwert, 1990, Brailsford and Faff, 1996, 

Franses, Neele, and Van Dijk, 1998 and Loudon, et al, 2000). Moreover, comparing normal 

density with non-normal ones has been also investigated by many researchers (see, for example 

Hsieh, 1989, Baillie and Bollerslev, 1989, Peters, 2000 or Lambert and Laurent, 2001). In this 

work, we couple these two advances by examining a variety of GARCH-class of models, the 

GARCH, EGARCH, FIGARCH and FIEGARCH processes where innovations follow different 

errors distributions (Normal, Student-t and Skewed Student-t). In-sample and out-of-sample 

forecasts evaluation are made using different loss functions 

 

GARCH class of models 

Let us consider an univariate time series ty . If 1t  is the information set (i.e. all the information 

available) at time 1t  , we can describe its functional form as: 

1t t t ty E y                                                                                                                     (1) 

where . .E    denotes the conditional expectation operator and t is the disturbance term (or 

unpredictable part), with   0tE   and   0t sE t s     . The t term in equation (1) is the 
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innovation of the process. The conditional expectation is the expectation conditional to every 

past information available at time 1t  . The Autoregressive Conditional Heteroscedastic 

(ARCH) process of Engle (1982) is any  t of the form: 

t t tz 
                                                                                                                                                      

(2) 

where tz  is an independently and identically distributed (i.i.d.) process,   0tE z   ,  var 1tz 

and where t is a time-varying, positive and measurable function of the information set at time 

1t  . By definition, t is serially uncorrelated with mean zero, but its conditional variance 

equals 2

t and, consequently, may change over time, contrary to what is assumed in OLS 

estimations. Particularly, the ARCH (q) process is specified by: 

2 2

0 1

1

q

t i t

i

    



                                                                                                                   (3) 

The processes considered in this paper are all ARCH-type. They differ on the functional form 

of 2

t but the basic logic is the same 

 

The GARCH(p,q) process 

Bollerslev (1986) have extended the ARCH models to the generalized ARCH (GARCH) 

models. The latter is characterized by an autoregressive moving average form in the conditional 

variance 2

t .  

For the GARCH (p, q) process the conditional variance is expressed as, 

2 2 2 2 2

0 1 1 1 1... ...t t q t q t p t p                    

   2 2   t tw L L     
                                                                                            (4)

 

Where 0w , 1 q 1 p,... , , ,... , 0     ,   2

1 2 ... q

qL L L L        and   2

1 2 ... p

pL L L L        are 

the lag polynomials with orders of q and p respectively for stability and covariance stationary 

of the  t  process. To ensure nonnegative of the conditional variance, it is assumed that all 

the roots of the polynomial  1 L   are laying outside the unit circles. 

In this paper we use the GARCH (1,1) process indicated as following: 

2 2 2

0 1 1 1 1t t t        
                                                                                               

(5) 
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EGARCH(p,q) process 

 

Our first asymmetric GARCH model is the Exponential GARCH (EGARCH) process of Nelson 

(1991): 

 2 2

0

1 1

ln ln
q p

t i t i j t j

i j

g z     

 

   
                                                                                                

(6) 

Where t

t

t

z



 is the normalized residuals series. 

The value of  tg z depends on several elements. Nelson (1991) notes that, “to accommodate 

the asymmetric relation among stock returns and volatility changes, the value of  tg z must be 

a function of both the magnitude and the sign of tz :” That is why he propose to express the 

function  .g as: 

  1 2t t t tg z z z E z                                                                                                                       
(7) 

Another advantage of this condition is that i does not require any stationary restriction. Notice 

also that tE z depends on the supposition made on the unconditional density. 

In this paper we use the GARCH (1,1) process indicated as following: The EGARCH (1,1) 

model may then be expressed as: 

      2 2

0 1 1 1 1 1ln lnt t t t tz E z z            
                                                                  

(8) 

The FIGARCH(p,d,q) process 
 

Baillie (1996) introduced FIGARCH process as a popular parametric approach to test the long 

memory property in the volatility of financial return series. In contrast to an stationary time 

series in which shocks die out at an exponential rate, or a non-stationary time series in which 

there is no mean reversion, shocks to an  I d  time series with  0,1d   decay at a very slow 

hyperbolic rate. The FIGARCH (p, d, q) process is given by: 

 

    21 1
d

t tL L L w                                                                                                        
(9) 

Conditional variance of
t  is: 
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 
 2 2

1 1
t tL


  


 

                                                                                                                  

(10) 

where,   1 1 2 2 ... K KL L L L        

when 0 1d  the coefficients capture the short term dynamics of volatility while fractional 

difference coefficient d process the long term characteristics of volatility. 

 

FIGARCH process is the extension of IGARCH process when d=1. In the IGARCH models 

shocks to the conditional variance are completely persistent and therefore the unconditional 

variance does not exist. In addition, when 0d  , FIGARCH process gives the same output 

with GARCH process and when 1d  , FIGARCH process gives the same output with 

IGARCH process. 

In its simplest form the FIGARCH(1,d,1) is given by, 

     21 1
d

tL L w L vt      
                                                                            

(11) 

The FIEGARCH(p,d,q)  process 

In order to accommodate asymmetries between positive and negative shocks, called the 

leverage effect, Bollerslev and Mikkelsen (1996) extend the FIGARCH process to FIEGARCH, 

to correspond with Nelson’s (1991) Exponential GARCH model to allow for asymmetry. The 

FIEGARCH(p,d,q) model is given as:  

         
12

1ln 1 1
d

t tw L L L g z  
 

                                                                                 (12)
 

where  t t t tg z z z E z       , the first term tz is the sign effect, and the second term

t tz E z     is the magnitude effect. All the roots of  L and  L  are an autoregressive 

polynomial and a moving average polynomial in the lag operator L and lie outside the unit 

circle, and both polynomials do not have a common root. When 1d  , the FIEGARCH(p,d,q) 

process reduces to EGARCH of Nelson (1991), and when 1d  , the process becomes 

integrated EGARCH (IEGARCH). 

In particular, the FIEGARCH (1,d,1) process may be conveniently expressed as: 

       2

1 1 11 1 log
d

t t t tL L w z E z z          
                                                    

(13) 

2.2.5 The APARCH process 

 

Generally, the inclusion of a power term acts so as to underline the periods of relative tranquility 

and volatility by amplify the outliers in that series. Squared terms are consequently so often 

used in processes. If a data series is normally distributed than we are capable to completely 
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illustrate its distribution by its first two moments3. If we recognize that the data may have a 

non-normal error distribution, other power transformations can be more appropriate. 

Distinguishing the possibility that a squared power term may not perforce be optimal, Ding, et 

al (1993) indicated a novel class of ARCH process called the Power-ARCH (PARCH) process. 

Rather than imposing a structure on the data, the Power-ARCH class of processes estimates the 

optimal power term. Ding, et al, (1993) also specified a generalized asymmetric version of the 

Power-ARCH process (APARCH). The APARCH ( , )p q process can be indicated as: 

 0

1 1

q p

t i t i i t i j t j

i j

          

 

    
                                                                                            (14)

 

where 0 0  , 0  , 0j  , 0i   and 1 1i   .  

This process couples the flexibility of a varying exponent  with the asymmetry parameter i

to take the “leverage effect” into account. Furthermore, the APARCH comprises ARCH, 

GARCH and GJR as following: 

ARCH when 2  , 0i   1,....i q and  0j   1,....j p  

 

The HYGARCH process 
 

Davidson (2001) extended the class of FIGARCH processes to HYGARCH  , , ,p d q

processes which stands for hyperbolic GARCH. HYGARCH processes replace the operator 

 1
d

L in FIGARCH process by    1 1
d

L    
 

. The parametrization of HYGARCH- 

processes is given as following: 

 
       12 21 1 1 1

1

d

t t

w
L L L

L
    




                                                                   (15)

 

 

The parameters   and d are assumed to be non-negative. HYGARCH processes nest GARCH 

processes (for 0  ), FIGARCH-processes (for 1  ) and IGARCH- processes (for 

1d   ). 

 

 

                                                           
3For more detail see McKenzie and Mitchell, (2001). 
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The FIEGARCH and FIAPARCH process 
 

The phenomenon of fractional integration has been prolonged to other GARCH types of 

processes, including the Fractionally Integrated EGARCH (FIEGARCH) of Bollerslev and 

Mikkelsen (1996) and the Fractionally Integrated APARCH (FIAPARCH) of Tse (1998). 

equally to the GARCH ( , )p q   process, the EGARCH ( , )p q  can be prolonged to account for 

long memory by factorizing the autoregressive polynomial     1 1
d

L L L       where 

all the roots of   0z   lie outside the unit circle. The FIEGARCH (p, d, q) is indicated by: 

         
12

1ln 1 1
d

t tw L L L s z  
 

                                                                                  (16) 

And the FIAPARCH (p, d, q) process can be indicated as: 

      
1

1 1 1
d

t t tw L L L
    

 
       

                                                                  (17)
 

Different types of conditional distribution functions are discussed in literature. These are the 

Normal distribution which we used in the previous section, the standardized Student-t 

distribution and the generalized error distribution and their skewed versions.  

Different errors distributions can be employed when using the four GARCH process as 

described before. In this paper, in addition to the Normal distribution largely employed in 

empirical literature, we use the t-students, skewed t-Students and the Generalized Error 

Distributions (GED). 

 

The Normal distribution is by far the most widely used distribution when estimating and 

forecasting GARCH processes. If we express the mean equation as in equation (1) and 

t tz t  , the log-likelihood function of the standard normal distribution is indicated as: 

   2 2

1

1
ln 2 ln

2

T

T t t

t

L z 


    
                                                                                        (18) 

where T is the number of observations. 

A second distribution also largely employed when using the GARCH-class of models is the t-

Student distribution. This distribution has been employed in many studies to account for fat 

tailed, see for instance. Bollerslev (1987), Hsieh (1989), Baillie and Bollerslev (1989), 
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Bollerslev, et al (1992), Palm (1996), Pagan (1996), and Palm and Vlaar (1997) among others 

showed that the Student-t distribution better captures the observed kurtosis in the return time 

series. The density  *f z v  of the Standardized Student-t Distribution can be expressed as: 

 
 

*

1 1
2 22 2

1

1 1 12
=

1
2 2 ,

1 12 2 2
2 2

v v

v

f z v
v v

v v Bz z

v v


 

 
 
 

   
               

    

                       (19) 

Where 2v  is the shape parameter and  
   

 
,

a b
B a b

a b

 


 
 the Beta function. Note, when 

setting 0  and 
 

2

2

v

v
 


equation (11) results in the usual one-parameter expression for 

the Student-t distribution. 

 

Generalized Error Distribution 

Nelson (1991) suggested considering the family of Generalized Error Distributions, GED, 

already employed by Box and Tiao (1973), and Harvey (1981).  *f z v can be indicated as: 

 
 

1

2*

1 1/2 1 /

v

v

z

v

v

v
f z v e

v











                                                                                     

(20) 

Where  

 

 
1/2

2/ 1
2

3

v

v

v

v



  
  
  

  
  
                                                                                                         

(21) 

with 0 v   . Note, that the density is standardized and thus has zero mean and unit variance. 

Arbitrary location and scale coefficients   and  can be commenced via the transformation 
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z
z






 . Since the density is symmetric, odd central moments of the GED are zero and those 

of even order can be calculated as:  
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   

   
 
                                                                           

(22) 

Skewness 1  and kurtosis 2  are given by: 
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 

 
 

                                                                        (23) 

For 1v  the GED reduces to the Laplace distribution, for 2v   to the Normal distribution, and 

for v  to the uniform distribution as a special case. 

 

EMPIRICAL RESULTS 

Data  

In this section, we describe the data and our empirical findings. Data consist in 6019 daily 

observations of the SP500 and the CAC40 returns stock markets. It covers a 23 years period, 

from 02/08/1997 to 30/02/2021. The estimation process is run using 23 years of data while the 

remaining 6 years are used for forecasting. The indices prices are transformed into their returns 

so that we obtain stationary series. The transformation is 

   1100* ln lnt t tr y y                                                                                               (24) 

Table 1. Descriptive statistics of return series 

 T Mean Std. 

dev.
 

Skewness
 

kurtosis
 

J.B
 

ARCH Q(10) 

SP500 6019
 

0.00012 0.831 -0.482 7.921 8316 0.542 16.721 

CAC40
 

6019
 

-0.0005 0.751 -0.512 6.892 7892 0.678 15.823 
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Table 1 report descriptive statistics of the SP500 and CAC40 return series. Mean returns were 

very small compared to the standard deviations. All the values of the Skewness statistics were 

negative as well as more pronounced in the CAC40 index return, suggesting a greater 

probability of large decreases in index returns compared to the series of SP500. The Skewness 

values show that the marginal distributions are asymmetrical to the left. The high values of the 

Kurtosis statistics are consistent with fat tails in the return distributions and are more 

pronounced in the index returns than in S&P500. 

In fact, the hypothesis of normality is rejected for all series since the high value of Jarque-Bera 

test. Moreover, the ARCH effects were likely to be found in all the return series since the 

significant value of the Lagrange multiplier (ARCH-LM) is statistic. The existence of this effect 

supports our decision to employ a GARCH modeling approach to examine the volatility 

dynamic and transmission between S&P500 and CAC40 stock markets. The CAC40 returns 

were more volatile than the other indices as measured by standard deviation. The stock markets 

indices have the same volatility.  

Table 2. The diagnostic tests of the standardized residuals 

 

 

 

 

S&P500 

model  Log-

Likelihood 

Akaike Q(10) ARCH(10) 

FIGARCH coefficient -3812.281 1.421 4.567 0.378 

p-prob - - 0.723 0.421 

FIEGARCH coefficient -3829.218 1.662 4.111 0.387 

p-prob - - 0.686 0.429 

FIAPARCH coefficient -3891.382 1.712 3.985 0.538 

p-prob - - 0.524 0.413 

HYGARCH coefficient -3821.385 1.428 4.812 0.589 

p-prob - - 0.528 0.628 

 

 

 

 

CAC40 

FIGARCH coefficient -4217.384 1.432 4.391 0.482 

p-prob - - 0.678 0382 

FIEGARCH coefficient -4512.812 1.623 4.287 0.581 

p-prob - - 0.862 0.387 

FIAPARCH coefficient -4548.237 1.723 4.813 0.428 

p-prob - - 0.218 0.674 

HYGARCH coefficient -4382.382 1.862 4.388 0.589 

p-prob - - 0.428 0.381 

 



                                                                                       British Journal of Marketing Studies 

                                                                                          Vol. 11, Issue 4, pp., 78-91, 2023 

                                                                                                Print ISSN: 2053-4043(Print) 

                                                                                           Online ISSN: 2053-4051(Online)  

                                                                                   Website: https://www.eajournals.org/    

                     Publication of the European Centre for Research Training and Development UK        

89 
 

Table 2 indicate that the FIEGARCH process product that the FIAPARCH. Note that the largest 

values of Log-Likelihood are greater in absolute values for the FIEGARCH and FIAPARCH 

models. This indicates the relevance of these processes compared to the other models 

considered. Regarding the Akaike statistics, we notice that the largest values are accepted for 

models FIEGARCH and FIAPARCH and HYGARCH. FIEGARCH is the best fitting model 

for SP500. FIGARCH is the best fitting model for CAC40. The Log-Likelihood value is always 

negative. The bigger Log-Likelihood measurement indicates that FIAPARCH is the best model 

to reveal forecasting process. Using the Akaike information the FIEGARCH process  was 

adjudged to be the best model in the case of S&P500 returns although the ARCH-effect. 

Table 3. Process evaluation forecasts 

process S&P500 CAC40 

 MSE MAD MSE MAD 

FIGARCH 0.0023 0.0054 0.00201 0.0083 

FIEGARCH 0.00098 0.0018 0.0028 0.00366 

FIAPARCH 0.0029 0.00017 0.0098 0.0046 

HYGARCH 0.0082 0.0061 0.00123 0.0028 

 

For stock markets, based on the MSE the FIAPARCH performs best. Further, the FIAPARCH 

process under give less errors to be the best model in the case of CAC40 returns compared to 

the S&P500. Lastly, based on the S&P500, the FIEGARCH gives less prediction error. Hence 

this confirms the selection of FIAPARCH process as good models since it evident from the 

MAE evaluation measure. The believe that our study contributes significantly to the literature 

by evaluating the difference process of GARCH family (FIGARCH- FIEGARCH- 

HYPERGARCH- FIAPARCH). 

CONCLUSION 

We have made an attempt a brief review and comparison on FIGARCH, FIEGARCH, 

FIAPARCH and HYGARCH models. 
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We believe that our study contributes significantly to the literature by evaluation different 

process of GARCH family (FIGARCH, FIEGARCH, APARCH and HYPERGARCH). The 

FIEGARCH is the best process 

Results from this paper points to the need for more empirical analysis on the S&P500 and 

CAC40 stock markets. For this research, we will compare time varying FIGARCH, 

FIEGARCH and HYPERGARCH type process that will factor in structural breaks to structural 

breaks adjusted FIEGARCH type process. 

Moreover, for most of the precious metals considered, this dual long memory is found to be 

adequately captured by an FIFGARCH and FIAPARRCH process, which also provides better 

out-of-sample forecast accuracy than several popular volatility process. Finally, evidence 

shows that conditional volatility of stock markets is better explained by long memory than by 

structural breaks. 
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